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ABSTRACT

Motivation: Meta-analysis of genomics data seeks to identify genes

associated with a biological phenotype across multiple datasets; how-

ever, merging data from different platforms by their features (genes) is

challenging. Meta-analysis using functionally or biologically character-

ized gene sets simplifies data integration is biologically intuitive and is

seen as having great potential, but is an emerging field with few es-

tablished statistical methods.

Results: We transform gene expression profiles into binary gene set

profiles by discretizing results of gene set enrichment analyses and

apply a new iterative bi-clustering algorithm (iBBiG) to identify groups

of gene sets that are coordinately associated with groups of pheno-

types across multiple studies. iBBiG is optimized for meta-analysis of

large numbers of diverse genomics data that may have unmatched

samples. It does not require prior knowledge of the number or size of

clusters. When applied to simulated data, it outperforms commonly

used clustering methods, discovers overlapping clusters of diverse

sizes and is robust in the presence of noise. We apply it to

meta-analysis of breast cancer studies, where iBBiG extracted novel

gene set—phenotype association that predicted tumor metastases

within tumor subtypes.

Availability: Implemented in the Bioconductor package iBBiG
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1 INTRODUCTION

Genomic studies have generated vast quantities of data, includ-

ing gene expression, copy number variation and single-nucleotide

polymorphisms. Tens of thousands of gene expression profiling

experiments are stored in public repositories (Barrett et al., 2009;

Parkinson et al., 2009) and are increasingly studied in aggregate.

The aim of these studies is typically to discover a set of genes that

participate in a pathway and are robustly predictive of a biolo-

gical phenotype in a meta-analysis of multiple studies.
Gene set analysis (GSA) was developed to identify such gene

sets whose expression distinguishes biological conditions, even if

single-gene analysis fails to find significant associations with the

phenotype. The method takes advantage of a priori defined gene

sets published in gene set databases (Gene Ontology, KEGG and

MSigDB) or resulting from differential expression studies

(MSigDB and GeneSigDB) (Culhane et al., 2009, 2012;

Subramanian et al., 2005). GSA has been successfully applied

to the analysis of microarray experiments (Goeman and

Buehlmann, 2007; Mootha et al., 2003) and has been extended

beyond transcriptomics to other areas, such as analysis of

genome-wide association studies (Cantor et al., 2010; Wu

et al., 2008). When compared to traditional single-gene analysis

that ranks differential gene expression between two conditions,

GSA produced more consistent biological results across studies

even when some genes in a gene set were absent or poorly rep-

resented in a dataset (Fan et al., 2011). Although GSA naturally

extends to integrated meta-analysis, surprisingly few studies have

applied meta-GSA to integration of multiple datasets (Segal

et al., 2004; Montaner and Dopazo, 2010). Most meta-GSA

approaches are designed for the limited case, where datasets

have matched samples or features (Montaner and Dopazo,

2010; Tyekucheva et al., 2011). These either create a merged

dataset of features (genes) common to all datasets and perform

a GSA or apply GSA on each individual datasets and then com-

bine the resulting GSA statistics or P-values to produce a ranked

list of gene sets (Montaner and Dopazo, 2010; Shen and Tseng,

2010; Tyekucheva et al., 2011).

While a single ranked list of gene sets may capture the biolo-

gical complexity of a simple cellular system, it is insufficient when

applied to the study of complex disease or meta-analysis of large

numbers of studies where different pathways are active in differ-

ent subsets of samples. These limitations can be addressed using

bi-clustering, a simultaneous similarity-based clustering of fea-

tures and conditions, resulting in modules; subsets of features

that exhibit consistent patterns over subsets of conditions

(Cheng and Church, 2000). Numerous bi-clustering approaches

have been applied to continuous (Cheng and Church, 2000;

Hochreiter et al., 2010; Huttenhower et al., 2009) and discretized

gene expression profiles (Prelic, 2005); however, these methods

have not been applied in meta-GSA.
We introduce iterative Binary Bi-clustering of Gene sets

(iBBiG), a new bi-clustering algorithm to perform meta-GSA

that addresses the shortcomings of ‘ranked list’ meta-GSA

approaches. It scales well when applied to hundreds of datasets

is tolerant to noise characteristic of genomics data and when

applied on simulated data, outperforms clustering and

bi-clustering methods including hierarchical and k-means cluster-

ing, FABIA (Hochreiter et al., 2010), COALESCE

(Huttenhower et al., 2009) and Bimax (Prelic, 2005). To perform

meta-GSA, we first transform ‘noisy’ gene expression profiles to*To whom correspondence should be addressed.
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simple binary gene set profiles, which simplifies the conjoint

study of different studies as it negates the need to match

probes across platforms. We then apply iBBiG to extract clusters

or ‘modules’ of groups of phenotypes whose gene expression

profiles are enriched in similar gene sets (Supplementary

Fig. 1). An attractive feature of iBBiG is that it does not require

prior knowledge or limit the number or size of clusters, a

non-trivial requirement in cluster analysis of most large biolo-

gical datasets. The results of iBBiG are easy to parse; iBBiG

modules are ranked by an information score, and within each

module, gene sets are ranked by a fitness score that measures its

weight in the module. It uses a genetic algorithm to maximize the

size and entropy of each bi-cluster producing a small number of

bi-clusters whose functional and phenotypic associations can be

easily interpreted; eight modules were associated with known

breast cancer clinical covariates in meta-GSA of 21 breast

cancer gene expression datasets, and we detected 13 modules

prognostic both within and across breast cancer molecular sub-

types using a cluster discovery approach, which ignored a priori

sample knowledge.

2 MATERIALS AND METHODS

We tested the ability of iBBiG to discover bi-clusters in matrices of real

and simulated data. Real gene expression data were transformed to gene

set profiles using two different GSA approaches (i) single sample and (ii)

pairwise test which were computed using the Bioconductor packages gene

set variation analysis (GSVA) and GSEAlm (Oron et al., 2008), respect-

ively. GSVA ranks gene sets within each individual gene expression pro-

file to produce a gene set by sample matrix. GSEAlm tests for enrichment

of gene sets in a ranked list of genes that are differential expressed be-

tween two conditions or clinical covariates (e.g. Grade 1 versus Grade 3)

resulting in a gene set by pairwise test matrix. Resulting GSA P-values are

discretized generating a spare binary matrix. Columns contain ‘pheno-

types’ defined by single sample or a pairwise test GSA results, in which 1

is a significant association (P50.05) between a gene set and phenotype

and 0 represents a lack of association.

2.1 Datasets

2.1.1 Single sample GSA data Normalized gene expression of pri-

mary breast tumors was download from GEO (GSE20685, n¼ 327) (Kao

et al., 2011) or imported from the Bioconductor data packages

breastCancerNKI (n¼ 337) (van’t Veer et al., 2002), and

breastCancerVDX (n¼ 344) (Minn et al., 2007). Data were obtained on

Affymetrix U133 Plus2, Agilent and Affymetrix U133a GeneChip arrays;

each contained different numbers of features. GSVA was applied using

gene sets from C2 subset of MSigDB v3.0 to transform gene expression

data into gene set x sample matrices. No prior knowledge or covariates

were used in GSVA. The resulting values were discretized (es.os��0.3) to

produce an association matrix of sparse (11.6%, n¼ 1) binary data of

1008 columns (breast cancer samples) and 5098 rows (up and

down-regulated results for 2459 gene sets). iBBiG was applied with de-

fault parameters with nModules¼ 20.

2.1.2 GSEAlm data To discover modules associated with known

breast cancer clinical covariates, 21 normalized breast cancer gene expres-

sion datasets (3875 gene expression profiles, see Supplementary Table S1)

annotated with 107 clinical covariates were obtained from the GeneChip

Ontology Database (Liu et al., 2011). Clinical covariates included tumor

grade, stage, age or hormone status. GSEAlm (Oron et al., 2008) was

applied to all pairwise combinations of each covariate. For example, if

the covariate grade has levels 1, 2 and 3, all possible pairwise combin-

ations would result in six phenotypes (Grades 1v2,1v3,2v1,2v3,3v1 and

3v2), therefore pairwise tests of the 107 covariates resulted in 448 pheno-

types. GSEAlm was performed independently and we did not merge

studies at the probe (gene), sample or phenotype level. Gene sets from

the C2 and C5 subsets of MSigDB v2.0 (n¼ 2293) (Subramanian et al.,

2005) and GeneSigDB v1.0 (n¼ 560) (Culhane et al., 2009) were used.

Resulting P-values were corrected for multiple testing using the false

discovery rate (Benjamini and Hochberg, 1995) and discretized

(P50.05), to produce an association matrix of sparse binary data with

448 columns (pairwise tests) and 2853 rows (gene sets). iBBiG was applied

to detected 50 modules. Examination of the fitness score and module size

plots (Supplementary Fig. 24) identified eight modules that had a fitness

score of over 1000 and a minimum of five pairwise tests.

2.1.3 Simulated data using observations of GSA results of real

data, we simulated a dataset of 400 pairwise tests by 400 gene sets in

which we placed seven modules (M1–M7; Fig. 1). These were introduced

by assigning associations (value of 1) to column and row pairs. To rep-

licate the expected properties of real data, modules were created such that

they partially overlap in columns, in rows and in both directions; M1 gene

sets overlapped with all modules exceptM3.M2 overlapped pairwise tests

with modules M4–7. Artificial modules had highly variable sizes and

included ‘wide’ modules driven by a large number of pairwise tests with

few gene sets and ‘tall’ modules like M1 which contained 25 pairwise tests

with a large number of gene sets (n¼ 250). This latter module (with many

gene sets) might represent a complex, well-characterized biological pro-

cess such as proliferation. Random background noise (at 10%), which is

characteristically observed in genomics data, was also added. In real data

the signal strength will vary both between and within modules. Therefore,

Fig. 1. Data were simulated to represent discretized P-values from GSA

of 400 pairwise tests and 400 gene sets. Associations are shown in gray,

whereas non-associations are in white. The dataset has 10% background

noise and contains seven overlapping clusters of gene set modules. These

include overlaps of pairwise tests (columns), overlaps of gene sets (rows)

and overlaps in both dimensions. There were different signal strength

gradients with each module M1 (90–40%), M2 (80–50%), M3

(80–40%), M4 (90–50%), M5 (80–40%), M6 (90–40%) and M7

(60–50%)
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to simulate variance among modules, random noise (replacing values of 1

with 0) was imposed to produce modules with different signal strengths

(Fig. 1). Within a module, we expect to see few strong signals (gene sets

associated with all pairwise tests) and many weaker signals. Therefore,

within each module, a noise gradient was also applied so that the first

gene sets had a greater number of associations (Fig. 1). This within-noise

gradient ranged from 10 to 60% and varied between modules. The size,

signal strength and signal gradient of each module are provided in

Table 1. Overlaps are visualized in Figure 1. R code to generate this

data (using the function makeArtificial available in our Bioconductor

package iBBiG) is provided in Supplementary Materials. iBBiG was

also applied to the 21 real datasets in which the sample labels were

permuted by random shuffle, but only recovered small modules (2 and

3 pairwise tests) with low or negative weighted scores (data not shown).

2.2 Methods

The iBBiG algorithm identifies bi-clusters (or modules) in a matrix of

binary data and consists of three main components (i) a module fitness

score (ii) a heuristic search algorithm to identify and grow modules in a

high dimensional search space and (iii) an iterative extraction method to

mask the signal of modules that have already been discovered.

2.2.1 Fitness score The module fitness score measures both module

size and homogeneity. A module yields a high fitness score when a large

group of phenotypes are associated with the same features (gene sets). We

use the term phenotype to indicate a binary vector of discretized P-values

resulting from either a pairwise test (GSEAlm) or single sample (GSVA)

GSA. Module homogeneity is evaluated using Shannon’s Entropy

(Shannon, 1948), a standard approach to measure homogeneity, often

used in cluster analysis Jenssen et al. (2003) and Li et al. (2004). An

asymmetrical score was used; associations are considered and

non-associations that can result from multiple technical causes are

ignored. Assume a binary matrix M, with m columns (phenotypes) and

n rows (features or gene sets), in which an element mij f1,0} represents an

association between phenotype j and gene set i. Given a module K with k

phenotypes, where 2� k�m, the probability of an association between a

gene set i and the phenotypes in module K is

pi ¼
1

k

X
j2K

mij: ð1Þ

Subsequently, the entropy Hi of gene set i and phenotypes in K can be

calculated

Hi ¼ �pi log2 pi � ð1� piÞ log2ð1� piÞ; ð2Þ

where 0.log2 0¼ 0 (Shannon, 1948). Hi has the range 0�Hi� 1, where

Hi¼0 when a gene set is associated (pi¼1) or not associated (pi¼0), with

all k phenotypes. Hi¼1 when associations are random pi¼ 0.5.

The score Si of gene set i in module K is weighted. The weight matrix

W has the same dimension as matrix M and equals M on the first iter-

ation (when finding the first module), but for subsequent iterations an

element wij of W is modified if mij was included in a module. The weight

Wik for gene set i in a module K is given as

Wik ¼
X
j2K

wij ð3Þ

Si ¼
Wikð1�HiÞ

�if pi > 0:5
0 if pi � 0:5

:

�
ð4Þ

The parameter � (range 05�51.0) is a weighting factor that balances

module homogeneity and module size (number of phenotypes versus

number of genesets). Clearly one could have a large module with low

homogeneity and vice versa. Consequently, � balances the tradeoff be-

tween specificity and sensitivity (Supplemental Fig. 3). The optimal de-

fault value (described below) was determined to be �¼ 0.3

(Supplementary Table 2). Supplemental Figure 2 depicts the behavior

of the entropy-based score for a single gene set. A score for an entire

module S is calculated by summing up the n gene set scores Si, which can

be optimized with the addition or omission of phenotypes. A beneficial

side effect of this approach is the weighting of gene sets (Supplementary

Figs. 4 and 5). The weight indicates the importance of a gene set to a

Table 1. Module nomenclature (M1–M7) is the same as that used in Figure 1

M1 M2 M3 M4 M5 M6 M7

Dimension 25 250 175 75 50 50 40 40 30 30 20 20 40 40

signal 0.4 0.9 0.4 0.8 0.5 0.8 0.4 0.9 0.4 0.8 0.6 0.9 0.5 0.6

Noise Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens

0.00 100 98.4 99.7 98.5 100 92.6 99.9 96.7 98.7 80.5 99.4 57.5 100 75.1

0.05 100 98.8 99.6 99.1 100 94.6 100 97.1 98.8 78.8 99.7 78.4 100 74.8

0.10 100 99.0 99.6 98.9 100 99.0 100 98.0 98.7 79.4 99.8 72.0 100 73.1

0.15 100 98.9 99.6 98.9 100 98.6 100 97.7 98.8 69.7 99.7 66.2 100 74.3

0.20 100 99.2 99.4 98.5 100 98.8 99.8 94.6 98.8 39.7 99.1 44.8 99.9 64.0

0.25 99.9 99.4 99.4 98.0 99.9 98.96 99.7 94.8 98.6 29.8 99.2 25.4 99.7 37.4

0.30 99.3 99.2 98.9 96.7 99.2 98.7 98.6 82.5 98.5 10.3 98.4 29.4 98.7 22.9

0.35 99.6 99.8 90.3 65.0 96.1 96.3 96.4 12.0 96.3 9.3 96.3 13.0 96.2 14.1

0.40 95.7 99.1 85.2 69.9 90.8 56.7 98.2 11.6 92.5 12.1 92.3 11.4 92.3 12.2

0.45 87.0 60.0 66.0 78.6 87.2 26.2 87.9 16.6 88.0 14.8 88.0 13.1 87.9 16.2

0.50 88.2 27.5 85.3 22.6 87.9 17.6 88.5 15.8 88.3 14.8 88.3 16.9 88.0 17.2

The first row indicates the dimension (number of columns and number of rows) of each module in the simulated dataset. The signal strength gradient within each module from

the strongest to weakest signal-to-noise ratio is provided in the second row. For example M1 has 25 pairwise tests (columns) and 250 gene sets (rows) and a signal-to-noise is

0.9 in the first few rows which decreases to 0.4 as the number of gene sets reaches 250. The remainder of the table shows the impact of increasing background noise (between 0

and 50%) on the mean specificity and sensitivity of 100 analyses (alpha¼ 0.3, selection pressure¼ 1.2, population size¼ 100, mutation rate¼ 0.08, success ratio¼ 0.6). Results

in which either sensitivity or specificity drop below 50% are highlighted with a grey background.

D.Gusenleitner et al.
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module, relative to other gene sets in that module. This ranking allows

comparison of the relative importance of biological processes represented

by those gene sets.

2.2.2 Genetic algorithm Due to the high dimensionality of the as-

sociation matrix, it is not feasible to search the solution space of all

possible modules exhaustively; hence we use a genetic algorithm.

Genetic algorithms (GAs) are a class of heuristic search algorithms and

a particular form of optimization methods based on evolutionary con-

cepts. They use natural selection, recombination and sexual reproduction

in order to find heuristic solutions for optimization problems. In the GA

implemented in iBBiG, a module (individual) is represented by a binary

vector with length equal to the number of phenotypes, where 1 indicates

membership of a phenotype within a module. A population of such in-

dividuals is initialized by randomly selecting two phenotypes. The fitness

of each individual is evaluated using the entropy-based gene set score.

High-fitness individuals are chosen as parents to create the next gener-

ation of solutions, using a linear ranking selection operator (Chakraborty

and Chakraborty, 1997). A single-point crossover operator is used for

recombination and a bit flip operator for the mutation operator. An

offspring selection operator is used to introduce self adaptive selection

pressure (Affenzeller and Wagner, 2005). The algorithm produces gener-

ations of solutions, until the highest fitness score in the population stag-

nates for a specified number of generations.

2.2.3 Iterative module extraction The bi-clustering approach

described so far is able to find one module at a time. In order to find

all possible clusters, an iterative approach similar to that described by

Huttenhower et al. (2009) was applied. After finding a module K, the

weights of associations (Wik) between gene set i and phenotypes k in

module K are subtracted from the weighting matrix W and the

bi-clustering is applied again,

Wik ¼Wikð1� ð1�HiÞ
�
Þ:

Few gene sets have associations with all k phenotypes (Hi¼ 0). Only the

portion of the signal used to calculate the fitness score is removed, as a

result a residual association signal Hi40 remains in the weight matrix.

Residual information not used in modules up to the current iteration is

available for subsequent iterations, ensuring iBBiG can find true over-

lapping clusters.

2.2.4 Optimization of iBBiG input parameters The optimal

range for each parameter of the GA was tested in 100 runs on simulated

data (Supplementary Tables S3–S7). The only parameter that had an

impact on the performance was the � parameter that regulates the weight-

ing between the homogeneity and module size (number of phenotypes)

(Supplementary Fig. S3). Experiments in which the � parameter was

varied 0.15�50.9) (Supplementary Table S2) show that the clustering

on the simulated datasets performs optimally (specificity 99.7% and sen-

sitivity 90.5%) with a value of �¼ 0.3. Most other parameters had little

effect. Higher population size P, which is required to establish the neces-

sary amount of genetic diversity of solutions, shows only marginal dif-

ferences in sensitivity and specificity (Supplementary Table S3). The same

is true for the mutation rate MR (Supplementary Table S4), the selection

pressure for parent selection SP (Supplementary Table S5) and the suc-

cess ratio SR that determines how many children have to outperform at

least one of their parents (Supplementary Table S6). The optimal default

settings were determined to be an � of 0.3, a population size of 100

individuals, a mutation rate of 0.08, a success ratio of 0.6, a selection

pressure of 1.2 and a stop criterion of 50 iterations of stagnation.

2.2.5 Comparison to other clustering methods K-means cluster-

ing was performed using the ‘stats’ library in R with the parameter K¼ 7.

Hierarchical clustering was applied to an asymmetrical binary distance

matrix using Ward’s minimum variance method in both dimensions.

Bi-clustering methods: � clustering (Cheng and Church, 2000),

xMOTIF (Murali and Kasif, 2003), Bimax (Prelic, 2005), Plaid (Turner

et al., 2005) and SPEC (Kluger, 2003) were applied using default param-

eters using the R packages ‘biclust’ and ‘stats’, respectively. Over 130 runs

of Bimax were performed to optimize module size parameters minr (2–26)

and minc (2–20) that define module row and column size. FABIA

(Hochreiter et al., 2010) was applied using the R library ‘fabia’ to find

eight clusters (p¼ 8) in 1000 cycles (cyc¼ 1000) with different spareness

loading (�¼ 0.1, 0.2 or 0.3). COALESCE (Huttenhower et al., 2009)

available in the Sleipnir package was performed using default parameters

for both initial cluster discovery and post-processing (COALESCE -j).

Each method detected different clusters, and results show the predicted

clusters with maximum pairwise Jaccard similarity index (JI) to each of

the ‘true’ modules M1–M7. In Supplementary Tables S10–16, JI was

calculated over phenotype membership, ignoring the ranking of the

gene sets. To assess iBBiG’s ability to assign gene sets to clusters

(Supplementary Tables S17), gene set scores for each predicted module

were subjected to Gaussian mixture modeling using the R function

‘mclust’ to discriminate gene sets with high scores from the background

null distribution.

2.2.6 Implementation Documentation and code are available in

the Bioconductor R package iBBiG. The core functions of the genetic

algorithm were implemented in C to speed computation.

3 RESULTS

3.1 Robustness of iBBiG in the presence of increasing

noise

iBBiG maintained high performance predicting the strongest sig-

nals (M14M24M3) in the presence of up to 45% noise when

background noise was increased in 5% increments up to 50%

(Table 1). The weaker signal modules (M4–M7) show a high

level of specificity but a decline in sensitivity starting at 20%

noise. Increasing the � parameter (from the default of 0.3 to

0.5) increased sensitivity with a trade-off of decreased specificity.

The algorithm detected M4 to M7 at 25% noise, with an � of 0.5

(Supplementary Table S7). In addition, we evaluated the stability

of gene set scores over 100 runs (Supplemental Fig. S4). Within

each module, gene sets are ranked by a score that indicates the

number of phenotypes in which a gene set is differentially regu-

lated. We observed that gene sets with high scores showed low

variation among runs (Supplemental Fig. S4).

3.2 Performance of global and bi-clustering methods on

simulated meta-GSA data

Global clustering methods (hierarchical clustering, k-means) had

difficultly detecting overlapping modules in the simulated dataset

as shown in Figure 2A and Supplementary Figures 6A and 7,

respectively. Although hierarchical clustering discovers M3 with

high specificity and sensitivity, it was unable to detect overlap-

ping clusters; it either identified the large clusters (M1 and M2)

or the smaller clusters depending on the height of the dendro-

gram cut. Supplementary Figure 6B and C shows the maximum

JI between predicted and true clusters when dendrogram was cut

to give 3–15 clusters. When hierarchical clustering was per-

formed to produce the optimal number of clusters (K¼ 8) with

the highest average JI (Figures 6B and C), it was still unable to

discriminate M2 and its overlapping clusters M5 and M6 which

Bi-clustering of binary data
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were all contained within its cluster 3 (Supplementary Table

S10).
Most genomics bi-clustering methods are not optimized for

binary data as they have been developed for gene expression

data with continuous values. Only FABIA, COALESCE and

Bimax discovered bi-clusters in the binary simulated data

matrix, the others tested (�-clustering, Plaid, SPEC, xMOTIF)

either did not accept a binary matrix as input or failed to find

clusters. FABIA performed only moderately well when applied

to the artificial dataset (Fig. 8). It tended to discover clusters with

large numbers of phenotypes which contained many false posi-

tives (Supplementary Fig. 8), for example the first cluster con-

tained almost all phenotypes (358/400) (Supplementary Table

S12). Increasing the alpha parameters from default (� ¼0.1) to

0.2 or 0.3 (Supplemental Tables � ¼0.2:13, � ¼0.3: 14) did im-

prove its ability to detect smaller clusters but still produced clus-

ters with high numbers of phenotypes and few gene sets. The

mean module specificity and precision of FABIA were 0.71, 0.71,

0.74 and 0.39, 0.38, 0.35 for alpha 0.1, 0.2, 0.3, respectively.

COALESCE outperforms most bi-clustering algorithms when

applied to gene expression data (Huttenhower et al., 2009), how-

ever only detected five of the seven clusters when applied to the

simulated data (Fig. 2B, Supplementary Table S11). It was

unable to discover the ‘tall’ module M1, which has few pheno-

types with a large number of gene sets and the smallest module

M6 which has overlaps in both M1 and M2.

Binary inclusion-maximal bi-clustering (Bimax) is arguably

one of the most popular binary bi-clustering algorithms, but it

is not optimized to tolerate noise in the signal (Prelic, 2005) and

produced small clusters with high specificity and poor sensitivity

in our simulated dataset (Supplementary Table S16). Bimax re-

quires that the number and size of clusters be specified as input

parameters. The simulated data contained modules of different

sizes, therefore we tested a large range of minimum row

(2�minr� 26) and column size (2�minc� 20), but the

maximum JI to M1-M7 ranged from 0.14 (M2) to 0.68 (M1)

(Supplementary Table S15), the best single combination was

minr¼ 22, minc¼ 4 (Supplementary Table S17) but this pro-

duced clusters of only four to six phenotypes which lacked sen-

sitivity 0.02 (M2)-0.24 (M1). No single combination of minr and

minc parameters could detect all seven modules due to their di-
verse sizes (Supplementalry Table S16).

3.3 Performance of iBBiG on simulated meta-GSA

dataset

Next, we applied iBBiG to the simulated data (Fig. 3). iBBiG

does not require the number of modules to be specified

and instead extracts an excess number (for example,

nModules¼ 20); the true number clusters are easily estimated
from the cluster weighted score that reflects the size and fitness

scores of each module. The modules are ranked in order of

decreasing score (Fig. 3A). Only 7/20 modules had a fitness

scores above background (Fig. 3A and C). The size of modules

dramatically decreases after Module 7; only low scoring groups

containing two or three phenotypes are found and these do not
have positive weighted scorces. Because we do not remove the

entire signal on each iteration, modules (which may be artifact)

will arise from remaining signal residue from stronger modules.

For example, phenotypes in M8 are a subset of those in M2.

Overlaps in phenotypes and gene sets of M3-M6 are detected

correctly.
To estimate the performance of iBBiG, it was applied to 100

randomly initialized artificial datasets (with k¼ 8) where it ac-

curately assigned phenotypes to modules 98% of the time, with a

specificity of 99%, precision of 96% and a sensitivity of 91%.
These statistics are based on correct identification of phenotypes

only and ignore gene set clustering (Supplementary Table S8).

We found iBBiG detected gene sets membership with high spe-

cificity (99%) and precision (92%) but lacked some sensitivity

(56%) following discretization of gene set scores (Supplementary

Fig. 2. Neither (A) hierarchical clustering or (B) COALESCE could detect all seven modules (M1–M7) in cluster analysis of the simulated dataset. True

modules are shown in dark gray, and detected modules are colored M1–M7 as indicated. (A) Rows and columns are ordered by hierarchical cluster

analysis (Wards minimum variance). Plots of the JI, which measured similarity between the true and predicted clusters when the dendrogram was cut to

give 3�K� 15, are provided in the Supplement and show that K¼ 8 was optimal, but produced clusters that detected smaller overlapping clusters at the

cost of the large clusters (M1 andM2). The larger modules could only be detected when the dendrogram was cut to produce fewer clusters. (B)Rows and

columns have the same order as Figure 1. COALESCE detected five of the seven modules and had difficulty detecting M1 and M6. Bar plots show the

predicted module size (number of phenotypes and gene sets)
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Table S8). We do not expect to observe 100% sensitive detection

of gene sets in modules M1, M2, M4 or M5 as these contain gene

sets with less than 50% signal (Table 1). The best performing run

of 100 detected almost all module phenotypes (specificity 100%

and sensitivity 98%) and more gene sets (specificity 99.7% and

sensitivity 72.5%) (Supplementary Table S9). The performance

of iBBiG gene set prediction was also assessed by calculating of

the variance of the scores within 100 runs (Supplementary Fig. 4)

and calculating the ROC curves for each module on one run

(Supplementary Fig. 5). The average runtime for the 400x400

matrix was 69.3 s on an Intel Core 2 Duo (3 GHz) running

Windows XP.

3.4 iBBiG discovers 13 modules of breast cancer (GSVA

analysis of three datasets)

We can uncover gene sets associated with unknown clinical cov-

ariates using single sample GSA (e.g. GSVA). iBBiG is optimized

to find overlapping bi-clusters in these complex data which can

reveal new biological pathways associated with disease. When

applied to 1008 gene expression profiles of primary breast

tumors from three studies (Kao et al., 2011; Minn et al., 2007:

van’t Veer et al., 2002) that had been obtained on different

technological platforms each containing different numbers of

features, iBBiG detected 13 modules with positive weighted

scores (Figure 4). The first four modules (M1–M4) were strongly

associated with breast cancer molecular subtypes Luminal A,

Basal-like, Luminal A or B and Basal like or HER2, respectively

(Fig. 4, Supplementary Table S18). Both M1 and M2 were en-

riched in cell proliferation genes and were highly predictive of

tumor recurrence in all cancer subtypes and within Luminal A

and Luminal B, respectively (Supplementary Table S18,

Supplementary Figs. S11–18). Most other modules were subsets

of samples in these modules but had different gene sets. For

example, M9 contains different proliferative gene sets, and over-

lapped with M1 and M3. Although M11 overlapped with M4, it

discovered a subset of poor prognosis basal-like patients and it

was prognostic of metastases recurrence within the basal-like

breast cancer (P50.01). M10 (Supplementary Fig. 19) was par-

ticularly interesting as it appears to predict patient prognosis

within Luminal A and ERRB2 subtypes (DMFS, P50.001,
Supplementary Figs. S20–22). There were 177 gene sets in M12

(Supplementary Fig. 19 and Table S19), which were associated

with a stromal response to hypoxia and induction of angiogentic

genes including TGFB1. The five top genes all contained tran-

scription factor binding sites for V$ATF4_Q2 (GATHER,

P50.0005) and 3/5 contained sites for V$OCT1_05

(GATHER, P50.0003) and are enriched in Gene Ontology

terms GO:0045906 (negative regulation of vasoconstriction)

and GO:0006701 (progesterone biosynthetic process), suggesting

new avenues for research in these breast cancer subtypes.

3.5 iBBiG identifies eight modules associated with known

clinical covariates in breast cancer

iBBiG was applied to extract 50 modules in a meta-GSA of

known clinical covariates (GSEAlm) associated with 3875 gene

expression profiles of breast tumors from 21 different studies

obtained on diverse platforms that were available in GCOD

(Liu et al., 2011). It extracted eight modules (Fig. S4) which

had between 9 and 43 pairwise tests (total n¼448)

(Supplementary Table 20). The largest, highest scoring module,

B1, was among five modules (B1, B2, B4, B7 and B8) enriched in

the phenotype (pairwise comparison) high versus low grade.

Although all associated with tumor grade, gene sets in each

module represented diverse biological actions; proliferation (B1

and B8), wound healing and cell–cell communication (B2), in-

flammatory processes and the tumor microenvironment (B4) and

extracellular matrix (B7). Module 8 (B8) is a residue of the pro-

liferation signal of B1 and all gene sets contained in B8 are also

present in B1. Modules B3, B5 and B6 were associated with

hormone receptor-positive luminal breast cancer. The Module

B3 was associated with low grade cancer or normal tissue cov-

ariate pair tests and points towards the requirement of a high

grade-cancer to dedifferentiate itself. The modules B5 and B6

were associated with protein processing (Supplementary Table

S20 and Fig. S4).
We investigated two modules (B1 and B4) associated with p53

mutated, hormone receptor (ER-, PR-) negative, basal-like

breast cancer—a poor prognosis subtype with few targeted thera-

pies. While the importance of proliferation (B1) is well described,

module B4 was of considerable biological interest

(Supplementary Fig. 25) as it was characterized by immune

and tumor microenvironment genes sets, including cytotoxic

T-cell pathway, and the cytokine pathways IL-12 and IL-17.

These genesets (B4) were associated with high-grade basal-like

and luminal B tumors but were not associated with metastases

(Supplementary Fig. S25). Survival analysis of a number of genes

in this module in six publicly available datasets confirmed they

were predictive of better outcome in Basal-like and ERBB2þ

breast cancer (Supplementary Fig. S26).

4 DISCUSSION

The iBBiG bi-clustering algorithm is optimized for module dis-

covery in sparse noisy binary genomics data and can be used for

A

B

C

D

Fig. 3. iBBiG bi-cluster analysis of the simulated dataset detects all mod-

ules (M1–M7) including those with overlaps (M3–M6). Plots show the

(A) fitness score (S) (B) size (k) and (C) weighted score of the first eight

modules. The weighted score is the log(k/m*S) where m is the total

number of phenotypes. Modules M1–M7 are highlighted in (D) an

image of the matrix in which rows and columns have the same order as

Figure 1. The eighth module (M8) contains the residues of other modules

which is reflected in a low weighted score
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meta-GSA of multiple genomics datasets, to discover modules:

groups of phenotypes whose differential gene expression profiles

are enriched in the same gene sets. Data integration is made

tractable by transformation of continuous ‘noisy’ gene expres-

sion data (with different probes/genes in each study) into profiles

of differentially enriched gene sets (which are common to all

studies). We examined two GSA approaches, GSEAlm which

tests for enrichment of gene sets in genes that are differentially

regulated between conditions and GSVA which is single sample

GSA. The former can be applied to identifying gene sets or path-

ways associated with known clinical covariates, the latter is a

pure discovery approach that ignores prior sample knowledge.
We designed iBBiG to have high specificity and thereby min-

imize the false-positive rate when discovering new classes, but the

iterative approach employed in iBBiG ensures it is sufficiently

sensitive to discover weak signals, even if they are potentially

masked by stronger ones. When applied to simulated data it

outperforms widely used global clustering approaches (K-

means, hierarchical cluster analysis) and newer bi-clustering

approaches (Bimax, FABIA and COALESCE) and is able to

find overlapping gene set modules of varying sizes. iBBiG was

able to identify all clusters in a simulated meta-GSA dataset with

high levels of specificity and sensitivity. An advantage of iBBiG

relative to other methods is that it does not require a priori
knowledge of the true number of clusters. Following the appli-
cation of iBBiG, the number of true clusters can be estimated

from the weighed scores of the extracted modules. In some cases,
we observed that a module may represent the residue or remain-
ing signal of a stronger, previously extracted module. This resi-

due remains because iBBiG only removes information from the
data matrix that is actually used for the entropy-based score in a
module. However, we do not consider these residual modules to

be a shortcoming of the method as their existence facilitates dis-
covery of the true overlap between modules and, further, these
modules can be easily detected by looking at the overlap of

phenotypes and gene sets.
Although iBBiG includes several parameters, we have shown

that most impact only computation time and do not effect cluster
discovery. The only parameter that had an impact on cluster

discovery was �, which regulates the weighting between cluster
homogeneity and the number of phenotypes. This parameter is
useful in fine-adjustment of the sensitivity–specificity ratio.

One major advantage of iBBiG is its robustness in the presence
of noise and its tolerance of missing data. It can tolerate high
levels of noise as the entropy derived fitness score add members

to a bi-cluster once the number of associations exceeds 50%. We
demonstrate that iBBiG performs well even in the presence of
false-positive associations and noise in both signal (20%) and

background (40%). Second, iBBiG does not require a gene set
to be associated with all phenotypes in a bi-cluster which is a
attractive feature in complex biological data were biological pro-

cesses maybe redundant or regulated by multiple factors concur-
rently. Many other bi-clustering algorithms, including Bimax
and the recently described BiBiT (Rodriguez-Baena et al.,

2011), discover only homogenous bi-clusters and have low toler-
ance to noise and missing data. Bimax identified a large number
of mini-bi-clusters and was unable to identify large clusters in our

simulated dataset. In practice, application of Bimax to genomics
data requires post-processing of bi-cluster results in order to
either join or visualize overlapping bi-clusters (Santamaria

et al., 2008).
We applied iBBiG to discovery of new modules among 1008

primary breast tumors and discovered 13 modules in an

iBBiG-GSVA analysis. Each module contained samples from
multiple studies demonstrating successful data integration.
While the largest highest confidence modules (M1–M4) dis-

covered breast cancer molecular subtypes known to be important
in breast cancer, the smaller modules represented sub-sets of
these subtypes, supporting recent evidence that there are sub-

types within each of the principal breast cancer molecular sub-
types (Curtis et al., 2012). The module M10 was characterized
by gene sets associated with angiogenesis in response to hypoxia

(or HIF1A degregulation) and was a strong predictor of recur-
rence in Luminal and ERRB2 amplied breast cancer. We un-
covered different modules (n¼ 8) associated with pairwise tests

of breast cancer clinical covariates in a meta-GSA of 21 breast
cancer gene expression datasets. Five of the eight modules
including the first and largest module was strongly associated

with tumor grade. Most high grade tumors were characterized
by increased cell cycle (B1/B8) and those with fewer metastases
had significant regulation of immune response genes (B4). In a

meta-analysis of two datasets, Shi et al., (2010) also reported an

Fig. 4. Meta-GSA using iBBiG bi-clustering of GSVA associations be-

tween 2459 gene sets which are up- or down-regulated (n¼ 5098) in gene

expression profiles of 1008 primary breast cancer tissue samples, obtained

using different array platforms in three independent studies (KAO, NKI

and VDX). Phenotypes and the gene sets are ordered according to

module membership in an image that highlights modules (n¼ 13) that

had a weighted score greater than zero. Color bars above the plots indi-

cate the study, molecular subtype and distant metastases free surival

events of patients. These are brown (KAO)/yellow (VDX)/green (NKI)/

red (basal-like)/pink (HER2 amplified)/Luminal B (navy)/Luminal A

(cyan)/no distant metastases (gray) and distant metastases (yellow), re-

spectively. The largest and first four modules were strongly associated

with molecular subtype across studies being enriched in Luminal A (M1),

Basal-like (M2), Luminal A or B (M3) and Basal-like or HER2 (M4)

respectively. Further details are given in the text and in Supplementary

Table S18. Plots below the image show the fitness size, score and weighted

score of each modules
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up-regulation of proliferation genes and down-regulation of cell

adhesion genes in high-grade breast tumors. Although they had

insufficient numbers of patients to establish statistical signifi-

cance, they observed that high levels of immune genes were an

indicator of good prognosis in high-grade breast cancer patients.

Our analysis also suggests B4 immune response is associated with

better outcome. When we examined which genes that most fre-

quently appeared in module B4 GeneSigDB gene signatures, we

found several chemokines including CCL5 (RANTES), a key

regulators of T-cell immune response highly expressed in breast

cancer and reported to be associated with metastases and pro-

gression (Soria and Ben-Baruch, 2008; Zhang et al., 2009).

However, our analysis does not fit this prevailing hypothesis

and suggests CCL5 is associated with good prognosis in

high-grade breast cancer patients.

In this study, we have used iBBiG to discover clusters in matri-

ces of discretized P-values from GSA of gene expression data;

however, the method can also be easily applied to GSA of other

different data types including SNP data (Cantor et al., 2010;

Raychaudhuri et al., 2009). iBBiG can be applied to non-geneset

data. For example, to demonstrate the application of iBBiG to

an extremely sparse matrix (50.3%40) in which small clusters

are expected, iBBiG was applied to discretized data from the

NHGRI genome-wide association study (GWAS) catalog

(Hindorff et al., 2009). As the weighted scores were low for mod-

ules identified, we averaged results over 100 runs of iBBiG and

chose 10 robust modules. Only genes and traits that occured in at

least 65/100 runs were included (Supplementary Fig. S27). These

modules are provided in Supplementary Table S22. It discovered

a possible link between triglyercides, HDL cholesterol and

waist circumference with genes GCKR, LPL, BUD13 and

ZNF259. Although LPL, BUD13 and ZNF259 has been impli-

cated previously, this module suggested a new link with an ex-

panding waistline and GCKR. While GSA requires input gene

sets, it is not restricted to databases of curated gene sets and can

use gene sets deduced through text mining from the published

literature (Jelier et al., 2011; Krallinger et al., 2010;

Raychaudhuri et al., 2009). We anticipate iBBiG will be useful

in integrated data analysis of multiple data types. iBBiG can be

performed on any binary matrix and could be applied to binary

protein–protein interaction or RNAi data; we would like to

extend it to other data types, including categorical data. An at-

tractive feature of iBBiG compared to others methods such as

the recently described logistic regression meta-GSA approach

(Montaner and Dopazo, 2010) is its ability to perform integrative

analysis using dozens of datasets.
In summary, iBBiG provides a simple, robust, rapid and scal-

able method for meta-GSA. When applied to simulated data it

outperforms commonly used clustering and bi-clustering

approaches and iteratively discovers gene set modules made up

of both strong and weaker signals. Meta-GSA using iBBiG con-

stitutes a new approach for discovery of pathway and gene set

behavior across multiple studies and provides a higher-level

understanding of gene and cellular function.
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